近期比赛的复现

Posted on Jul 16, 2023
Updated on Oct 28, 2024

好久没写blog了。。复现一下最近的比赛

Crypto CTF 2023

Medium

blobfish

#!/usr/bin/env python3

import os
from hashlib import md5
from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from PIL import Image
from PIL import ImageDraw
from flag import flag

key = get_random_bytes(8) * 2
iv = md5(key).digest()

cipher = AES.new(key, AES.MODE_CFB, iv=iv)
enc = cipher.encrypt(flag)

img = Image.new('RGB', (800, 50))
drw = ImageDraw.Draw(img)
drw.text((20, 20), enc.hex(), fill=(255, 0, 0))
img.save("flag.png")

hkey = ''.join('\\x{:02x}'.format(x) for x in key[:10])

os.system(f'/bin/zip -0 flag.zip flag.png -e -P \"$(/bin/echo -en \"{hkey}\")\"')

把flag用AES加密后画到一张图片里,然后用zip压缩,而且是无损压缩,密码就是AES key的前10个字节。

github上有工具可以Crack legacy zip encryption with Biham and Kocher’s known plaintext attack。这个工具要求我们至少要知道12个明文字节。因为是png文件,所以可以从文件结构下手。

wikipng文件标准可以知道png有固定的file header,然后第一个data chunk一定是IHDR。

The IHDR chunk must appear FIRST. It contains:

   Width:              4 bytes
   Height:             4 bytes
   Bit depth:          1 byte
   Color type:         1 byte
   Compression method: 1 byte
   Filter method:      1 byte
   Interlace method:   1 byte

IHDR中的内容与图片像素内容无关,所以只要生成一个大小和flag.png一样的图片就可以得到33个字节的明文(data chunk有固定的结构,Length, chunk type, CRC加起来有12字节)。

from PIL import Image
from PIL import ImageDraw

img = Image.new('RGB', (800, 50))
img.save("./blobfish/test.png")
img_data = open("./blobfish/test.png", 'rb').read()

img2 = Image.new('RGB', (800, 50))
drw = ImageDraw.Draw(img2)
drw.text((20, 20), "eihei", fill=(255, 0, 0))
img2.save("./blobfish/test2.png")
img2_data = open("./blobfish/test2.png", 'rb').read()

print(img_data[:33].hex())
print(img2_data[:33].hex())
assert img_data[:33] == img2_data[:33]
open("./blobfish/plain", 'wb').write(img_data[:33])

然后就可以按照这里说的一步一步来。

What is inside

$ ./bkcrack -L flag.zip 
bkcrack 1.5.0 - 2022-07-07
Archive: flag.zip
Index Encryption Compression CRC32    Uncompressed  Packed size Name
----- ---------- ----------- -------- ------------ ------------ ----------------
    0 ZipCrypto  Store       2ba69c8a         1168         1180 flag.png

Running the attack

$ ./bkcrack -C flag.zip -c flag.png -p plain
bkcrack 1.5.0 - 2022-07-07
[18:20:18] Z reduction using 26 bytes of known plaintext
100.0 % (26 / 26)
[18:20:18] Attack on 281173 Z values at index 6
Keys: 03492be6 b81a5123 24d7b146
29.1 % (81901 / 281173)
[18:21:02] Keys
03492be6 b81a5123 24d7b146

Recovering the original files

$ ./bkcrack -C flag.zip -c flag.png -k 03492be6 b81a5123 24d7b146 -d flag.png
bkcrack 1.5.0 - 2022-07-07
[18:25:23] Writing deciphered data flag.png (maybe compressed)
Wrote deciphered data.

OCR识别出来得到69f421d9e241933cbc62a9ffe937779c864ffa193de014aeb57046b16c40c7353910c61a2676f14f4c7737f038a6db53262c50

Recovering the original password

$ ./bkcrack -k 03492be6 b81a5123 24d7b146 -r 10 '?b'
bkcrack 1.5.0 - 2022-07-07
[18:37:20] Recovering password
length 0-6...
length 7...
length 8...
length 9...
length 10...
67.8 % (44409 / 65536)
[18:37:21] Password
as bytes: ad 6e fb 79 2a ea 5a aa ad 6e 
as text: �n�y*�Z��n

get flag

from Crypto.Cipher import AES
from Crypto.Random import get_random_bytes
from hashlib import md5

enc = "69f421d9e241933cbc62a9ffe937779c864ffa193de014aeb57046b16c40c7353910c61a2676f14f4c7737f038a6db53262c50"
key = 'ad 6e fb 79 2a ea 5a aa'.replace(' ', '')
key = bytes.fromhex(key*2)
iv = md5(key).digest()

cipher = AES.new(key, AES.MODE_CFB, iv=iv)
flag = cipher.decrypt(bytes.fromhex(enc))
print(flag)

Roldy

#!/usr/bin/env python3

from Crypto.Util.number import *
from pyope.ope import OPE as enc
from pyope.ope import ValueRange
import sys
from secret import key, flag

def die(*args):
	pr(*args)
	quit()

def pr(*args):
	s = " ".join(map(str, args))
	sys.stdout.write(s + "\n")
	sys.stdout.flush()

def sc(): 
	return sys.stdin.buffer.readline()

def encrypt(msg, key, params):
	if len(msg) % 16 != 0:
		msg += (16 - len(msg) % 16) * b'*'
	p, k1, k2 = params
	msg = [msg[_*16:_*16 + 16] for _ in range(len(msg) // 16)]
	m = [bytes_to_long(_) for _ in msg]
	inra = ValueRange(0, 2**128)
	oura = ValueRange(k1 + 1, k2 * p + 1)
	_enc = enc(key, in_range = inra, out_range = oura)
	C = [_enc.encrypt(_) for _ in m]
	return C

def main():
	border = "|"
	pr(border*72)
	pr(border, " Welcome to Roldy combat, we implemented an encryption method to    ", border)
	pr(border, " protect our secret. Please note that there is a flaw in our method ", border)
	pr(border, " Can you examine it and get the flag?                               ", border)
	pr(border*72)

	pr(border, 'Generating parameters, please wait...')
	p, k1, k2 = [getPrime(129)] + [getPrime(64) for _ in '__']
	C = encrypt(flag, key, (p, k1, k2))

	while True:
			pr("| Options: \n|\t[E]ncrypted flag! \n|\t[T]ry encryption \n|\t[Q]uit")
			ans = sc().decode().lower().strip()
			if ans == 'e':
				pr(border, f'encrypt(flag, key, params) = {C}')
			elif ans == 't':
				pr(border, 'Please send your message to encrypt: ')
				msg = sc().rstrip(b'\n')
				if len(msg) > 64:
					pr(border, 'Your message is too long! Sorry!!')
				C = encrypt(msg, key, (p, k1, k2))
				pr(border, f'C = {C}')
			elif ans == 'q':
				die(border, "Quitting ...")
			else:
				die(border, "Bye ...")

if __name__ == '__main__':
	main()

使用到一个OPE的加密方法,OPE(保序加密算法)可以保证本来有序的明文加密后依然保持原有的顺序。然后再看这个python库的源码

class OPE(object):

    def __init__(self, key, in_range=None, out_range=None):
        if not isinstance(key, bytes):
            raise TypeError("key: expected bytes, but got %r" % type(key).__name__)
        self.key = key

        if in_range is None:
            in_range = ValueRange(DEFAULT_IN_RANGE_START, DEFAULT_IN_RANGE_END)
        self.in_range = in_range

        if out_range is None:
            out_range = ValueRange(DEFAULT_OUT_RANGE_START, DEFAULT_OUT_RANGE_END)
        self.out_range = out_range

        if in_range.size() > out_range.size():
            raise Exception('Invalid range')

    def encrypt(self, plaintext):
        """Encrypt the given plaintext value"""
        if not isinstance(plaintext, int):
            raise ValueError('Plaintext must be an integer value')
        if not self.in_range.contains(plaintext):
            raise OutOfRangeError('Plaintext is not within the input range')
        return self.encrypt_recursive(plaintext, self.in_range, self.out_range)

    def encrypt_recursive(self, plaintext, in_range, out_range):
        in_size = in_range.size()       # M
        out_size = out_range.size()     # N
        in_edge = in_range.start - 1    # d
        out_edge = out_range.start - 1  # r
        mid = out_edge + int(math.ceil(out_size / 2.0))  # y
        assert in_size <= out_size
        if in_range.size() == 1:
            coins = self.tape_gen(plaintext)
            ciphertext = stat.sample_uniform(out_range, coins)
            return ciphertext
        coins = self.tape_gen(mid)
        x = stat.sample_hgd(in_range, out_range, mid, coins)

        if plaintext <= x:
            in_range = ValueRange(in_edge + 1, x)
            out_range = ValueRange(out_edge + 1, mid)
        else:
            in_range = ValueRange(x + 1, in_edge + in_size)
            out_range = ValueRange(mid + 1, out_edge + out_size)
        return self.encrypt_recursive(plaintext, in_range, out_range)

简单地说就是把在in_range的明文映射到out_range,中间怎么映射的可以不用管。然后再看如何decrypt

    def decrypt_recursive(self, ciphertext, in_range, out_range):
        in_size = in_range.size()       # M
        out_size = out_range.size()     # N
        in_edge = in_range.start - 1    # d
        out_edge = out_range.start - 1  # r
        mid = out_edge + int(math.ceil(out_size / 2.0))  # y
        assert in_size <= out_size
        if in_range.size() == 1:
            in_range_min = in_range.start
            coins = self.tape_gen(in_range_min)
            sampled_ciphertext = stat.sample_uniform(out_range, coins)
            if sampled_ciphertext == ciphertext:
                return in_range_min
            else:
                raise InvalidCiphertextError('Invalid ciphertext')
        coins = self.tape_gen(mid)
        x = stat.sample_hgd(in_range, out_range, mid, coins)

        if ciphertext <= mid:
            in_range = ValueRange(in_edge + 1, x)
            out_range = ValueRange(out_edge + 1, mid)
        else:
            in_range = ValueRange(x + 1, in_edge + in_size)
            out_range = ValueRange(mid + 1, out_edge + out_size)
        return self.decrypt_recursive(ciphertext, in_range, out_range)

用到一个binary search,那么在这题也可以用binary search来解决,只是不知道中间的映射过程,搜索的范围大了一点。

from pwn import *
from Crypto.Util.number import long_to_bytes
sh = remote("06.cr.yp.toc.tf", 31377)

inra_min = 0
inra_max = 2**128

known_flag = b"CCTF{Boldyreva_5ymMe7rIC_0rD3r_pRe5Erv!n9_3nCryp7i0n!_LStfig9TM}"

def get_enc_flag():
    sh.sendlineafter(b"Options:", b'E')
    sh.recvuntil(b"encrypt(flag, key, params) = ")
    enc_s = sh.recvline()[:-1].decode()
    return eval(enc_s)

def send_and_recv(msg: int):
    sh.sendlineafter(b"Options:", b'T')
    sh.sendlineafter(b"Please send your message to encrypt:", known_flag+long_to_bytes(msg, 16))
    sh.recvuntil(b"C = ")
    enc_s = sh.recvline()[:-1].decode()
    return eval(enc_s)

def compare_block(o, t, indix):
    if o[indix] < t[indix]:
        return -1
    elif o[indix] == t[indix]:
        print(f"[+]     find a block {o[indix]}")
        return 0
    else:
        return 1

enc_flag = get_enc_flag()
print(enc_flag)

boundary = [
    (89407868913636251168773770536032493343, 89407868913636251168773770536032493377),
    (161404117612298851011345476078246453087, 161404117612298851011345476078246453121),
    (109522198106951428429083248646293684223, 109522198106951428429083248646293749761),
    (73653713219403595476250315686415715707, 73653713219403595476250315686415715714)
    ]

cnt = 1
block_id = 3
min, max = boundary[block_id]
try:
    while min < max:
        mid = (max + min) // 2
        temp = send_and_recv(mid)
        res = compare_block(temp, enc_flag, block_id)
        if res == 0:
            print(long_to_bytes(mid))
            break
        elif res == -1:
            min = mid-1
            print(f"{cnt}: smaller than flag, try more bigger")
        else:
            max = mid+1
            print(f"{cnt}: bigger than flag, try more smaller")
        cnt += 1
except:
    print(f"{min = }, {max = }")

keymoted

#!/usr/bin/env sage

from Crypto.Util.number import *
from flag import flag

def gen_koymoted(nbit):
	p = getPrime(nbit)
	a, b = [randint(1, p - 1) for _ in '__']
	Ep = EllipticCurve(GF(p), [a, b])
	tp = p + 1 - Ep.order()
	_s = p ^^ ((2 ** (nbit - 1)) + 2 ** (nbit // 2))
	q = next_prime(2 * _s + 1)
	Eq = EllipticCurve(GF(q), [a, b])
	n = p * q
	tq = q + 1 - Eq.order()
	e = 65537
	while True:
		if gcd(e, (p**2 - tp**2) * (q**2 - tq**2)) == 1:
			break
		else:
			e = next_prime(e)
	pkey, skey = (n, e, a, b), (p, q)
	return pkey, skey

def encrypt(msg, pkey, skey):
	n, e, a, b = pkey
	p, q = skey
	m = bytes_to_long(msg)
	assert m < n
	while True:
		xp = (m**3 + a*m + b) % p
		xq = (m**3 + a*m + b) % q
		if pow(xp, (p-1)//2, p) == pow(xq, (q-1)//2, q) == 1:
			break
		else:
			m += 1
	eq1, eq2 = Mod(xp, p), Mod(xq, q)
	rp, rq = sqrt(eq1), sqrt(eq2)
	_, x, y = xgcd(p, q)
	Z = Zmod(n)
	x = (Z(rp) * Z(q) * Z(y) + Z(rq) * Z(p) * Z(x)) % n
	E = EllipticCurve(Z, [a, b])
	P = E(m, x)
	enc = e * P
	return enc

nbit = 256
pkey, skey = gen_koymoted(nbit)
enc = encrypt(flag, pkey, skey)

print(f'pkey = {pkey}')
print(f'enc = {enc}')

一个非常常规的RSA+EC,我之前的一篇文章就分析过,所以重点还是放在分解n。 $$ n=p_q\ q = 2_(p-2^{256} + 2^{128})+1+t\ or\ 2*(p-2^{256} - 2^{128})+1+t $$ 由于t很小可以忽略,所以可以构造出两个关于p的二次方程,然后可以得到两个p的近似,最后用coppersmith解p的低位就可以,其中一个近似的结果是解不出来的。

from Crypto.Util.number import getPrime, GCD
from gmpy2 import iroot
from sage.all import PolynomialRing, Zmod
pkey = (6660938713055850877314255610895820875305739186102790477966786501810416821294442374977193379731704125177528590285016474818841859956990486067573436301232301, 65537, 5539256645640498184116966196249666621079506508209770360679460869295427007578, 20151017657582479433586370393795140515103572865771721775868586710594524816458)
enc = (6641320679869421443758875467781930795132746694454926965779628505713445486895274490835545942727970688359873955019634877304270220728625521646208912044469433 , 2856872654927815636828860866843721158889474116106462420201092148493803550131351543372740950198853438539317164093538508795630146854596724019329887894933972 , 1)
n, e, a, b = pkey
nbit = 256
r = 2 ** (nbit - 1)
s = 2 ** (nbit // 2)

# a, b, c = 2, -2*(r+s), -n
# delta = b**2 - 4*a*c
# p_ = (-b + iroot(delta, 2)[0]) // (2*a)
# print(p_, p_.bit_length())
"""
93511613846272978051774379195449772332692693333173612296021789501865098047642
93511613846272978051774379195449772333185546232721473548443129310958604273824
"""
p_ = 93511613846272978051774379195449772332692693333173612296021789501865098047642
R = PolynomialRing(Zmod(n), 'x')
x = R.gen()
f = p_ + x
root = f.small_roots(X=2**50, beta=0.42)
p = GCD(n, f(x=root[0]))
q = n // p
assert p*q == n
print(p, q)

然后就是很常规的decrypt

from Crypto.Util.number import long_to_bytes
from sympy import legendre_symbol
from sage.all import EllipticCurve, GF, inverse_mod, Zmod
from math import lcm

pkey = (6660938713055850877314255610895820875305739186102790477966786501810416821294442374977193379731704125177528590285016474818841859956990486067573436301232301, 65537, 5539256645640498184116966196249666621079506508209770360679460869295427007578, 20151017657582479433586370393795140515103572865771721775868586710594524816458)
enc = (6641320679869421443758875467781930795132746694454926965779628505713445486895274490835545942727970688359873955019634877304270220728625521646208912044469433 , 2856872654927815636828860866843721158889474116106462420201092148493803550131351543372740950198853438539317164093538508795630146854596724019329887894933972 , 1)
n, e, a, b = pkey

p, q = 93511613846272978051774379195449772332692693333173612296021789501865098047641, 71231138455229760679977773382211636812795966734548537479512744210680602878261

orderp = EllipticCurve(GF(p), [a, b]).order()
orderq = EllipticCurve(GF(q), [a, b]).order()
tp = p + 1 - orderp
tq = q + 1 - orderq
cx = enc[0]
u = (cx**3 + a*cx + b) % n
up = legendre_symbol(u, p)
uq = legendre_symbol(u, q)
assert up == uq == 1
d = inverse_mod(e, lcm(p+1-tp, q+1-tq))
E = EllipticCurve(Zmod(n), [a, b])
c = E((enc[0], enc[1]))
m = d*c

print(long_to_bytes(int(m[0])))

最后得到的flag的最后一位要修正一下,因为前面生成点的时候要求满足二次剩余。

DASCTF X 0x401

ezDHKE

from Crypto.Util.number import *
from Crypto.Cipher import AES
from hashlib import sha256
from random import randbytes, getrandbits
from flag import flag

def diffie_hellman(g, p, flag):
    alice = getrandbits(1024)
    bob = getrandbits(1024)
    alice_c = pow(g, alice, p)
    bob_c = pow(g, bob, p)
    print(alice_c , bob_c)
    key = sha256(long_to_bytes(pow(bob_c, alice, p))).digest()
    iv = b"dasctfdasctfdasc"
    aes = AES.new(key, AES.MODE_CBC, iv)
    enc = aes.encrypt(flag)
    print(enc)

def getp():
    p = int(input("P = "))
    assert isPrime(p)
    assert p.bit_length() >= 1024 and p.bit_length() <= 2048
    g = 2
    diffie_hellman(g, p, flag)

getp()

由我们提供modulu p,然后做DHKE,直接给一个p-1 smooth的prime,然后用pohlig-hellman解dlp。

from Crypto.Util.number import getPrime, isPrime, long_to_bytes, sieve_base
from Crypto.Cipher import AES
from hashlib import sha256
from pwn import *
import random
from sage.all import discrete_log, GF

context.log_level = 'debug'
is_remote=True
if is_remote:
    sh = remote("node4.buuoj.cn", 25735)
else:
    sh = process(["python", "problem_2.py"])

def getSmoothP(lbound, ubound,digits):
    flag = False
    while not flag:
        pSmooth = 2
        primes = []
        while (pSmooth.bit_length() < lbound or not isPrime(pSmooth+1)):
            prime = getPrime(random.randint(2, digits))
            if prime not in primes:
                pSmooth *= prime
                primes.append(prime)
        flag = True
        if pSmooth.bit_length() > ubound:
            flag = False
    pSmooth += 1
    return pSmooth, primes

# p, facs = getSmoothP(1024, 2048, 16)
# print(p, isPrime(p), p.bit_length())
# print(facs)
p = 4105711157686384919659886084922308099345091031616266488383302451817555397122028096174284199260242246031324358818375139627204894374290872468958930235949674619183046042244975516625978894843032524347866836336310274102966648274039354672718733827938995471650785973542486210912102927279955176856005649816015734404405654263337144365315329431
fac = [3, 47951, 859, 7, 127, 1213, 71, 131, 1009, 389, 1439, 7043, 50627, 27479, 7027, 673, 3271, 467, 5, 1867, 6389, 31721, 19, 25763, 19973, 73, 359, 5237, 839, 449, 26119, 47, 223, 773, 821, 83, 881, 827, 40433, 22273, 21997, 21893, 31, 977, 463, 2357, 383, 1289, 7577, 3251, 491, 4129, 2693, 43, 919, 23, 181, 36187, 347, 661, 149, 23447, 11, 4673, 101, 43313, 24391, 1693, 97, 151, 1063, 10039, 1993, 179, 13, 17, 7927, 61, 52259, 18367, 229, 1301, 5483, 3067, 79, 157, 41, 62903, 10889, 113, 33937, 29153, 34871, 6337, 13591, 59, 199, 6089, 15467, 6563, 48193, 1597, 163, 2683, 137, 3301, 29921, 8831]

sh.sendlineafter(b"P = ", str(p).encode())
alice_c = int(sh.recvuntil(b' '))
bob_c = int(sh.recvline().decode()[:-1])
print(f"{alice_c = }\n{bob_c = }")
enc = eval(sh.recvline()[:-1])
print(enc, len(enc))
g = GF(p)(2)
alice = int(discrete_log(alice_c, g, ord=p-1))
bob = int(discrete_log(bob_c, g, ord=p-1))
print(f"{alice = }\n{bob = }")
print(f"{pow(alice_c, bob, p) == pow(bob_c, alice, p)}")
key = sha256(long_to_bytes(pow(bob_c, alice, p))).digest()
iv = b"dasctfdasctfdasc"
aes = AES.new(key, AES.MODE_CBC, iv)
flag = aes.decrypt(enc)
print(flag)
sh.close()

ezRSA

from Crypto.Util.number import *
from secret import secret, flag
def encrypt(m):
    return pow(m, e, n)
assert flag == b"dasctf{" + secret + b"}"
e = 11
p = getPrime(512)
q = getPrime(512)
n = p * q
P = getPrime(512)
Q = getPrime(512)
N = P * Q
gift = P ^ (Q >> 16)
print(N, gift, pow(n, e, N))
print(encrypt(bytes_to_long(secret)),
    encrypt(bytes_to_long(flag)))

# 75000029602085996700582008490482326525611947919932949726582734167668021800854674616074297109962078048435714672088452939300776268788888016125632084529419230038436738761550906906671010312930801751000022200360857089338231002088730471277277319253053479367509575754258003761447489654232217266317081318035524086377 8006730615575401350470175601463518481685396114003290299131469001242636369747855817476589805833427855228149768949773065563676033514362512835553274555294034 14183763184495367653522884147951054630177015952745593358354098952173965560488104213517563098676028516541915855754066719475487503348914181674929072472238449853082118064823835322313680705889432313419976738694317594843046001448855575986413338142129464525633835911168202553914150009081557835620953018542067857943
# 69307306970629523181683439240748426263979206546157895088924929426911355406769672385984829784804673821643976780928024209092360092670457978154309402591145689825571209515868435608753923870043647892816574684663993415796465074027369407799009929334083395577490711236614662941070610575313972839165233651342137645009 46997465834324781573963709865566777091686340553483507705539161842460528999282057880362259416654012854237739527277448599755805614622531827257136959664035098209206110290879482726083191005164961200125296999449598766201435057091624225218351537278712880859703730566080874333989361396420522357001928540408351500991

要先根据gift分解N,gift的高16 bits就是p的高16 bits,所以可以求得q[:16] = N // p[0:16],然后q[0:16] xor gitf[16:32]得到p[16:32],循环直到恢复p。但是这样会有误差,所以取小一点比如10 bits或8 bits,最好是$2^n$,比如2, 4, 8,这样可以直接得到完整的p。

然后就是熟悉的related message attack。

from Crypto.Util.number import getPrime, inverse, long_to_bytes
from sage.all import PolynomialRing, Zmod
from ctf.attacks.rsa.related_message import attack

N, gift, h = 75000029602085996700582008490482326525611947919932949726582734167668021800854674616074297109962078048435714672088452939300776268788888016125632084529419230038436738761550906906671010312930801751000022200360857089338231002088730471277277319253053479367509575754258003761447489654232217266317081318035524086377 ,8006730615575401350470175601463518481685396114003290299131469001242636369747855817476589805833427855228149768949773065563676033514362512835553274555294034 ,14183763184495367653522884147951054630177015952745593358354098952173965560488104213517563098676028516541915855754066719475487503348914181674929072472238449853082118064823835322313680705889432313419976738694317594843046001448855575986413338142129464525633835911168202553914150009081557835620953018542067857943
enc_s, enc_flag = 69307306970629523181683439240748426263979206546157895088924929426911355406769672385984829784804673821643976780928024209092360092670457978154309402591145689825571209515868435608753923870043647892816574684663993415796465074027369407799009929334083395577490711236614662941070610575313972839165233651342137645009, 46997465834324781573963709865566777091686340553483507705539161842460528999282057880362259416654012854237739527277448599755805614622531827257136959664035098209206110290879482726083191005164961200125296999449598766201435057091624225218351537278712880859703730566080874333989361396420522357001928540408351500991


p_highbit = bin(gift)[2:][:16]
gift = bin(gift)[2:][16:]

kbits = 8
for i in range((512 - 16)//kbits):
    p_ = int(p_highbit.ljust(512, '0'), 2)
    q_ = N // p_
    q_highbit = bin(q_)[2:]
    s = min(i*kbits, 512)
    d = min(s+kbits, 512)
    r = bin(int(q_highbit[s:d], 2) ^ int(gift[s:d], 2))[2:].zfill(kbits)

    p_highbit += r

p_high = int(p_highbit, 2)
p = p_high
q = N // p
assert p*q == N

phi1 = (p-1)*(q-1)
e = 11
d1 = inverse(e, phi1)
n = pow(h, d1, N) + N
print(n)

f1=lambda x: x
for l in range(100):
    f2 = lambda x: x*2**8 + int.from_bytes(b"dasctf{" + b"\x00"*l + b"}", 'big')
    m = attack(n, e, enc_s, enc_flag, f1, f2)
    if m != n-1:
        print(m)
        print(long_to_bytes(m))
        break

ezAlgebra

from Crypto.Util.number import getPrime, bytes_to_long

def YiJiuJiuQiNian(Wo, Xue, Hui, Le, Kai):
    Qi = 1997
    Che = Wo+Hui if Le==1 else Wo*Hui
    while(Xue):
        Qi += (pow(Che, Xue, Kai)) % Kai
        Xue -= 1
    return Qi
    
l = 512
m = bytes_to_long(flag)
p = getPrime(l)
q = getPrime(l//2)
r = getPrime(l//2)
n = p * q * r
t = getrandbits(32)
c1 = YiJiuJiuQiNian(t, 4, p, 1, n)
c2 = YiJiuJiuQiNian(m, 19, t, 0, q)
c3 = YiJiuJiuQiNian(m, 19, t, 1, q)
print(f"n = {n}")
print(f"c1 = {c1}")
print(f"c2 = {c2}")
print(f"c3 = {c3}")

首先对于c1,看到$(x+p)^n$很自然的把二项式展开mod p。 $$ c1-1997\equiv \sum_{i=1}^{4}{t^i}\pmod{p} $$ 由于t是很小的解,直接用small roots可以得到,然后就可以gcd算p。

然后有两个多项式 $$ \sum_{i=1}^{19}{(x+t)^i} + 1997 - c2 \equiv 1\pmod{q}\ \sum_{i=1}^{19}{(xt)^i} + 1997 - c2 \equiv 1\pmod{q} $$ 不知道的量是q和x,两个变量两个方程可以用groebner basis解。

最后解出来的x并不是real flag,还要用$kq$爆破(k还挺大的)。

from Crypto.Util.number import isPrime, long_to_bytes
from sage.all import Zmod, ZZ, Ideal
from math import gcd

l=512
n = 119156144845956004769507478085325079414190248780654060840257869477965140304727088685316579445017214576182010373548273474121727778923582544853293534996805340795355149795694121455249972628980952137874014208209750135683003125079012121116063371902985706907482988687895813788980275896804461285403779036508897592103
c1 = 185012145382155564763088060801282407144264652101028110644849089283749320447842262397065972319766119386744305208284231153853897076876529326779092899879401876069911627013491974285327376378421323298147156687497709488102574369005495618201253946225697404932436143348932178069698091761601958275626264379615139864425
c2 = 722022978284031841958768129010024257235769706227005483829360633993196299360813
c3 = 999691052172645326792013409327337026208773437618455136594949462410165608463231

x = Zmod(n)['x'].gen()
f = x**4 + x**3 + x**2 + x - c1 + 1997
t = f.small_roots(X=2**32, beta=0.4)[0]

p = gcd(n, f.change_ring(ZZ)(x=t))
assert isPrime(p)
print(f"{p = }")

x, y = Zmod(n)['x, y'].gens()
f1 = 1997 - c2
f2 = 1997 - c3
for i in range(1, 20):
    f1 += (y*t)**i
    f2 += (y+t)**i

I = Ideal(f1, f2)
print(I.groebner_basis())

def poly_gcd(a, b):
    while b:
        a, b = b, a % b
    return a.monic()

y = -21158731716376226090392498841915660119151249151578293634082749989659307225047065454562556490794720241251831294269248252992828782428316834166828404876181491874871787144664849984606114249820338190252050491223066273953777506705536480844475141933848618113343415375867066617512805575869013694523034573111259114274
q = 87038069032840052005520908272237788908169043580221040711149494083975743478969
m = y % q
for i in range(999999, 10000000):
    flag = long_to_bytes(m + i*q)
    if b'dasctf' in flag:
        print(flag)

巅峰极客 2023

数学但高中

x=4{0<y<6}

y=4{2<x<6,17<x<18,28<x<30,41<x<42}

y=6{4<x<6,15<x<16,17<x<19,41<x<43,50<x<51}

x=7{0<y<6}

(x-9)^2+(y-3)^2=1

x=10{2<y<3}

(x-12)^2+(y-3)^2=1

x=13{0<y<3}

y=0{11<x<13,15<x<16,50<x<51}

y=-x+17{14<x<15}

y=x-11{14<x<15}

x=15{0<y<2,4<y<6}

x=17{1<y<6}

x=19{3<y<4}

x=21{3<y<4}

(x-20)^2+(y-3)^2=1{2<y<3}

(x-23)^2+(y-3)^2=1{3<y<4}

x=22{2<y<3}

x=24{2<y<3}

(x-26)^2+(y-3)^2=1{25<x<26}

y=0.5x-11{26<x<27}

y=-0.5x+17{26<x<27}

y=2{29<x<30,31<x<33,39<x<40}

x=29{2<y<5}

x=32{2<y<5}

y=x-27{31<x<32}

(x-34)^2+((y-3.5)^2)/(1.5^2)=1

x=36{2<y<3}

(x-37)^2+(y-3)^2=1{3<y<4}

x=38{2<y<3}

x=41{2<y<6}

x=44{3<y<4}

(x-45)^2+(y-3)^2=1{2<y<3}

x=46{3<y<4}

x=47{2<y<3}

(x-48)^2+(y-3)^2=1{3<y<4}

x=49{2<y<3}

x=51{0<y<2,4<y<6}

y=x-49{51<x<52}

y=-x+55{51<x<52}

根据上面这些把flag画出来

image-20230724155702070

中间有个o是个椭圆我嫌麻烦就没画。

Flag: flag{Funct1on_Fun}

Simple_encryption

from Crypto.Util.number import *
import gmpy2
import random
import binascii
from secret import flag

p = getStrongPrime(1024)
q = getStrongPrime(1024)
N = p * q
g, r1, r2 = [getRandomRange(1, N) for _ in range(3)]
g1 = pow(g, r1 * (p - 1), N)
g2 = pow(g, r2 * (q - 1), N)


def encrypt(m):
    s1, s2 = [getRandomRange(1, N) for _ in range(2)]
    c1 = (m * pow(g1, s1, N)) % N
    c2 = (m * pow(g2, s2, N)) % N
    print("c1=", c1)
    print("c2=", c2)
    return (c1, c2)


c = encrypt(bytes_to_long(flag[:len(flag) // 2]))
print('N=', N)
print('g1=', g1)


def pad(msg, length):
    l = len(msg)
    return msg + (length - l) * chr(length - l).encode('utf-8')


p = getStrongPrime(1024)
q = getStrongPrime(1024)
assert (p != q)
n = p * q
e = 5
d = inverse(e, (p - 1) * (q - 1))
assert (e * d % (p - 1) * (q - 1))

flag = pad(flag[len(flag) // 2:], 48)
m = [int(binascii.b2a_hex(flag[i * 16:i * 16 + 16]).decode('utf-8'), 16) for i in range(3)]
print('S=', sum(m) % n)
cnt = len(m)
A = [(i + 128) ** 2 for i in range(cnt)]
B = [(i + 1024) for i in range(cnt)]
C = [(i + 512) for i in range(cnt)]
Cs = [int(pow((A[i] * m[i] ** 2 + B[i] * m[i] + C[i]), e, n)) for i in range(cnt)]
print('N=', n)
print('e=', e)
print('Cs=', Cs)

'''
c1= 19024563955839349902897822692180949371550067644378624199902067434708278125346234824900117853598997270022872667319428613147809325929092749312310446754419305096891122211944442338664613779595641268298482084259741784281927857614814220279055840825157115551456554287395502655358453270843601870807174309121367449335110327991187235786798374254470758957844690258594070043388827157981964323699747450405814713722613265012947852856714100237325256114904705539465145676960232769502207049858752573601516773952294218843901330100257234517481221811887136295727396712894842769582824157206825592614684804626241036297918244781918275524254
c2= 11387447548457075057390997630590504043679006922775566653728699416828036980076318372839900947303061300878930517069527835771992393657157069014534366482903388936689298175411163666849237525549902527846826224853407226289495201341719277080550962118551001246017511651688883675152554449310329664415179464488725227120033786305900106544217117526923607211746947511746335071162308591288281572603417532523345271340113176743703809868369623401559713179927002634217140206608963086656140258643119596968929437114459557916757824682496866029297120246221557017875892921591955181714167913310050483382235498906247018171409256534124073270350
N= 21831630625212912450058787218272832615084640356500740162478776482071876178684642739065105728423872548532056206845637492058465613779973193354996353323494373418215019445325632104575415991984764454753263189235376127871742444636236132111097548997063091478794422370043984009615893441148901566420508196170556189546911391716595983110030778046242014896752388438535131806524968952947016059907135882390507706966746973544598457963945671064540465259211834751973065197550500334726779434679470160463944292619173904064826217284899341554269864669620477774678605962276256707036721407638013951236957603286867871199275024050690034901963
g1= 20303501619435729000675510820217420636246553663472832286487504757515586157679361170332171306491820918722752848685645096611030558245362578422584797889428493611704976472409942840368080016946977234874471779189922713887914075985648876516896823599078349725871578446532134614410886658001724864915073768678394238725788245439086601955497248593286832679485832319756671985505398841701463782272300202981842733576006152153012355980197830911700112001441621619417349747262257225469106511527467526286661082010163334100555372381681421874165851063816598907314117035131618062582953512203870615406642787786668571083042463072230605649134
S= 234626762558445335519229319778735528295
N= 28053749721930780797243137464055357921262616541619976645795810707701031602793034889886420385567169222962145128498131170577184276590698976531070900776293344109534005057067680663813430093397821366071365221453788763262381958185404224319153945950416725302184077952893435265051402645871699132910860011753502307815457636525137171681463817731190311682277171396235160056504317959832747279317829283601814707551094074778796108136141845755357784361312469124392408642823375413433759572121658646203123677327551421440655322226192031542368496829102050186550793124020718643243789525477209493783347317576783265671566724068427349961101
e= 5
Cs= [1693447496400753735762426750097282582203894511485112615865753001679557182840033040705025720548835476996498244081423052953952745813186793687790496086492136043098444304128963237489862776988389256298142843070384268907160020751319313970887199939345096232529143204442168808703063568295924663998456534264361495136412078324133263733409362366768460625508816378362979251599475109499727808021609000751360638976, 2240772849203381534975484679127982642973364801722576637731411892969654368457130801503103210570803728830063876118483596474389109772469014349453490395147031665061733965097301661933389406031214242680246638201663845183194937353509302694926811282026475913703306789097162693368337210584494881249909346643289510493724709324540062077619696056842225526183938442535866325407085768724148771697260859350213678910949, 5082341111246153817896279104775187112534431783418388292800705085458704665057344175657566751627976149342406406594179073777431676597641200321859622633948317181914562670909686170531929552301852027606377778515019377168677204310642500744387041601260593120417053741977533047412729373182842984761689443959266049421034949822673159561609487404082536872314636928727833394518122974630386280495027169465342976]
'''

第一部分 $$ g_1=g^{r_1*(p-1)} \pmod{N}\ g_2=g^{r_2*P(q-1)}\pmod{N}\

g_1=g^{r_1*(p-1)}=1\pmod{p}\ g_1-1=kp\ p = \gcd(n, g_1-1)\ c_1=m*g_1^{s1}\pmod{N}\ m=c_1\ mod\ p $$ 第二部分

e很小直接开根,然后解二次方程:

from Crypto.Util.number import *
from gmpy2 import iroot
from sage.all import sqrt

S= 234626762558445335519229319778735528295
N= 28053749721930780797243137464055357921262616541619976645795810707701031602793034889886420385567169222962145128498131170577184276590698976531070900776293344109534005057067680663813430093397821366071365221453788763262381958185404224319153945950416725302184077952893435265051402645871699132910860011753502307815457636525137171681463817731190311682277171396235160056504317959832747279317829283601814707551094074778796108136141845755357784361312469124392408642823375413433759572121658646203123677327551421440655322226192031542368496829102050186550793124020718643243789525477209493783347317576783265671566724068427349961101
e= 5
Cs= [1693447496400753735762426750097282582203894511485112615865753001679557182840033040705025720548835476996498244081423052953952745813186793687790496086492136043098444304128963237489862776988389256298142843070384268907160020751319313970887199939345096232529143204442168808703063568295924663998456534264361495136412078324133263733409362366768460625508816378362979251599475109499727808021609000751360638976, 2240772849203381534975484679127982642973364801722576637731411892969654368457130801503103210570803728830063876118483596474389109772469014349453490395147031665061733965097301661933389406031214242680246638201663845183194937353509302694926811282026475913703306789097162693368337210584494881249909346643289510493724709324540062077619696056842225526183938442535866325407085768724148771697260859350213678910949, 5082341111246153817896279104775187112534431783418388292800705085458704665057344175657566751627976149342406406594179073777431676597641200321859622633948317181914562670909686170531929552301852027606377778515019377168677204310642500744387041601260593120417053741977533047412729373182842984761689443959266049421034949822673159561609487404082536872314636928727833394518122974630386280495027169465342976]

Cs_ = [int(iroot(Cs_i, e)[0]) for Cs_i in Cs]
cnt = 3
A = [(i + 128) ** 2 for i in range(cnt)]
B = [(i + 1024) for i in range(cnt)]
C = [(i + 512) for i in range(cnt)]

def sol(a, b, c):
    delta = b**2 - 4*a*c
    assert delta > 0
    return (-b + int(sqrt(delta))) // (2*a)

for i in range(cnt):
    print(long_to_bytes(sol(A[i], B[i], C[i]-Cs_[i])))

Rosita

非常好的一道题目,参考无趣的浅的wp

Recover Elliptic Curve

题目给了很多个曲线上的点,找关系式去求解a, b, p

先假设3个点 $$ (x_1,y_1):y_1^2=x_1^3+ax_1+b\ \ mod\ p\\ (x_2,y_2):y_2^2=x_2^3+ax_2+b\ \ mod\ p\\ (x_3,y_3):y_3^2=x_3^3+ax_3+b\ \ mod\ p $$ 找关系 $$ T_1=(y_1^2-x_1^3)-(y_2^2-x_2^3)=a(x_1-x_2)\\ T_2=(y_1^2-x_1^3)-(y_3^2-x_3^3)=a(x_1-x_3)\\ T_1(x_1-x_3)-T_2(x_1-x_2)=0\pmod{p} $$ 多求出几组求gcd就可以得到p,解方程得到a, b。

Analizy Curve

求出椭圆曲线的第一件事就是分析order。发现$#E_p=p$,满足Smart attack的条件,所以可以求$Q_i=d_iG$ $$ \vec{Q}=\vec{d}G $$

ortho lattice attack

正交格攻击我后面还想再写一篇blog来仔细研究一下

$$ \vec{Q}=M\cdot (R,E,C)\ $$

$$ M=\begin{bmatrix} m_0 & nonce_0 & sh_0\ m_1 & nonce_1 & sh_1\ \vdots & \ddots \ m_{73} & nonce_{73} & sh_{73}\ \end{bmatrix} $$

进而 $$ M\cdot (R,E,C)^T=\vec{d}\cdot G $$ 假设有一个格$A$与$\vec{d}$正交 $$ A\vec{d}=0\pmod{p} $$ 那么 $$ AM=0 $$ 而M就是A的right kernel,

所以构造 $$ L=\begin{bmatrix} \vec{d} & I \ q & 0 \end{bmatrix} $$

$$ (A|k)\cdot L=\begin{bmatrix} 0 & A \end{bmatrix} $$

所以LLL可以求出A,然后对A的right kernel 规约,出来的第一行就是flag

from sage.all import *
from functools import reduce
from ctf.attacks.ecc.smart_attack import attack
from tqdm import tqdm
from Crypto.Util.number import long_to_bytes
points = eval(open("out.tuo", 'r').read())
kp = []

for i1, i2, i3 in [points[3*i:3*(i+1)] for i in range(len(points)//3)]:
    x1, y1 = i1
    x2, y2 = i2
    x3, y3 = i3
    kp.append( ((y1**2 - x1**3) - (y2**2 - x2**3))*(x1-x3) - ((y1**2 - x1**3) - (y3**2 - x3**3))*(x1-x2) )

p = reduce(gcd, kp)

a = ((y1**2 - y2**2) - (x1**3 - x2**3)) * inverse_mod(x1-x2, p) % p
b = (y1**2 - x1**3 - a*x1) % p

print(a, b)

E = EllipticCurve(GF(p), [a, b])
G = E.gens()[0]

# d = []
# for i in tqdm(points):
#     di = attack(G, E(i))
#     d.append(di)
# assert len(d) == len(points)

# open("d.txt", 'w').write(str(d))
d = eval(open("d.txt", 'r').read())

L = matrix(ZZ, len(d)+1)
for i in range(len(d)):
    L[i, 0] = d[i]
    L[i, i+1] = 1
L[-1, 0] = p
L = L.LLL()
ret = []
for row in L:
    if row[0] == 0:
        ret.append(row[1:])
print(len(ret))

M = matrix(ZZ, ret)
print(f"M : {M.nrows()} X {M.ncols()}")
m = block_matrix(ZZ, [
    [M[:, :70], identity_matrix(70)]
]).LLL()
print(m[:, 0].T)
key = matrix(ZZ, M.right_kernel().basis()).LLL()[0]
print(len(key))
print("flag:")
for i in key:
    print(chr(long_to_bytes(ZZ(i))[8]), end='')
print()

Flag: Congratulations! Your flag is: flag{893d041e-c0a2-3145-5320-cdee7d3c87fb}